	Paper Number	Title			
Tue 12:40PM	EW-TuL-3	A New Cluster Ion Beam for Depth Profiling Challenging Organic Materials			
ohn S. Hamme	ond (Physical Elect	ronics)			
C_{60} and coronene cluster ion sources have been recently introduced for XPS and TOF-SIMS sputter depth profiling of many polymer materials. These sources have also been very successful for the removal of common organic contamination before XPS and TOF-SIMS surface analysis. This experience with C_{60} and coronene cluster ion sources has revealed several polymer systems for which these cluster sources can not produce "non-destructive" chemical depth profiling with XPS and TOF-SIMS. Typically these polymers are either cross-linked, highly susceptible to radiation induced cross-linking, or are polymerized with bonds that are not amenable to sputter depth profiling. A new gas cluster ion beam (GCIB) source that produces massive argon cluster ions will be shown to successfully produce XPS and TOF-SIMS depth profiles on challenging materials such as polyimide thin films. The GCIB source can also be used to remove ion beam and plasma induced damaged layers on polymer materials.					
This new ion source will greatly expand the breadth of materials for which XPS can produce chemical state depth profiles on multi-layer thin films. In addition, the use of a dual beam depth profiling approach with GCIB and LMIG sources on TOF-SIMS instruments will expand the applications for 3D characterization of polymer and biomaterial samples. Examples will be presented demonstrating the benefits of the GCIB for both XPS and TOF-SIMS analyses.					
Tue 4:20PM	AS-TuA-8	From Depth Profiling to FIB Sectioning for 3D TOF-SIMS Imaging of Organics			
Crogory Fisher	(Dhysical Flastman	ics): Scott Bryan (Dhysical Electronics): Dang Ly (Conoral Motors Company);			
Noel Smith (Ore TOF-SIMS chara somewhat routin organic and inorg susceptible to ion distributions. Som of the elemental depth profile ana experimental cor case of a favorab TOF-SIMS imag of a specimen is imaging of ~ 10 depth profile. Th differential sputt FIB sectioning at	gon Physics); Chris acterization of mate e. Nevertheless, the ganic specimens bey n beam-induced mo me matrix compone and molecular distr lysis under ideal ins nditions, the efficacy ble matrix and to < 3 ging the interior of a revealed to depths of µm deep volumes n he advantage of the l	ics); Scott Bryan (Physical Electronics); Peng Lu (General Motors Company); topher Szakal (NIST) rials in the range of several microns from the sample surface has become re are practical limitations to the use of ion beam sputtering for probing both yond the surface region. Certain matrix components do not sputter well and are lecular damage. This accumulated beam damage gives rise to incorrect molecular nts may sputter at a different rate than others which results in a misrepresentation ibutions. Finally, the time requirements to achieve uniform (i.e. representative) strumental conditions can become prohibitive. Even under optimized y of sputter depth profiling for 3D TOF-SIMS imaging is limited to $< 5 \ \mu m$ in the 600 nm in the case of an unfavorable matrix. An alternative approach for 3D specimen is to utilize FIB milling and sectioning. With FIB milling, the interior of $\sim 50 \ \mu m$ within a reasonable analytical timeframe. Additionally, 3D chemical hay be achieved in the same time it would take to perform a low voltage sputter FIB-TOF approach is that the artifacts caused by sputter depth profiling, i.e. ted ion beam damage to matrix molecules, are avoided. The union of successive ysis cycles to achieve 3D chemical imaging will be discussed and illustrated 25.			

Dennis F. Paul (Physical Electronics); John S. Hammond (Physical Electronics); David G. Watson (Physical Electronics)

Scanning Auger Microscopy is a powerful compositional analysis technique for surfaces and nanostructures. It is well known that Auger instruments based on full CMA analyzers provide a stable imaging platform and analytical capability that can be successfully applied to a wide range of material systems. Recently a high energy resolution spectroscopy mode that provides enhanced chemical characterization was added to a CMA Auger instrument. This new functionality is integrated with the instrument while maintaining all the existing capabilities and benefits

Schedule	Paper Number	Title
associated with the	he CMA based Aug	er instrument.
information from facilitates a chem mapping and hig	annealed metal sili nical state evaluation h energy resolution	rgy resolution spectroscopy mode will be demonstrated with detailed chemical icide ultra thin films on silicon wafers. Low energy ion beam depth profiling n of the silicide/wafer interface induced by the annealing process. Auger Auger spectroscopy also characterizes the three dimensional nanostructures erfaces of these metal silicide ultra thin films.
Tue 6:00PM	SS-TuP-22	XPS Organic Depth Profiling Analysis of Poly-glycidyl Methacrylate Brushes
Polytechnique Fé Switzerland) The application of brush-like thin fi XPS analysis was induced chemica	edérale de Lausanne of XPS C_{60} sputter d lm structures will b s able to obtain qua l damage. To minin	ics); John F. Moulder (Physical Electronics); Raphael Barbey (Ecole e, Switzerland); Harm-Anton Klok (Ecole Polytechnique Fédérale de Lausanne, depth profiling to characterize synthesized poly-glycidyl methacrylate (PGMA) e presented. In contrast to low voltage (250 V) Ar sputtering, C ₆₀ sputtering with ntitative chemical state information as a function of depth with minimal ion beam nize sputtering artifacts and improve interface definition, Zalar (azimuthal) geometry for C ₆₀ sputter depth profiling was used for this work. The XPS depth
		associated with various solutions applied to these organic films. XPS Comparison of Ar, Coronene, C_{60} , and Ar Gas Cluster Ion Beam Depth Profiling of Polyimide Films
PHI, Japan); John University, Japar Polyimide thin fi display panels du excellent flexibil ion beam and pla therefore highly of modification laye polyimide films of GCIB sputter sou quantification and of the polyimide beam energy of t	h F. Moulder (Physic) Ims have found wich the to their excellent ity and other mecha sma surface modified desirable to find a quer and the polyimided with Ar, Coronene, urce produces an Ar d chemical state species with a wide range of he GCIB will be pro-	ronics); Takuya Miyayama (ULVAC-PHI, Japan); Noriaki Sanada (ULVAC- ical Electronics); Mineharu Suzuki (ULVAC-PHI, Japan); A Takuhara (Kyushu le-spread use in many industrial products such as microelectronics and thin film insulating properties, high resistance to heat in manufacturing processes and its unical properties. To increase the adhesion of metal films to polyimide substrates cation steps are frequently incorporated in the manufacturing processes. It is uantitative chemical depth profiling technique to characterize the surface e thin film itself. A comparison of the use of XPS depth profiling of thin C_{60} , and Ar Gas Cluster Ion Beam (GCIB) sputter sources will be presented. The $c_{2,500}^+$ ion beam with user definable incident beam energy. XPS elemental ectroscopy reveals that Ar, Coronene and C_{60} , ion sources produce rapid damage of ion gun experimental conditions. Optimized conditions for the incident ion esented to provide minimal chemical state damage during the depth profiling of o be presented showing that the GCIB source can be used to remove Ar^+ induced
Wed 2:20PM	AS-WeA-2	A New Cluster Ion Beam for Advanced Molecular Depth Profiling of Polymers by TOF-SIMS
Japan); Mineharu		apan); Shin-ichi Iida (ULVAC-PHI, Japan); Noriaki Sanada (ULVAC-PHI, PHI, Japan); Gregory Fisher (Physical Electronics); John S. Hammond (Physical Electronics)

The introduction of C_{60}^{+} as a sputter beam for TOF-SIMS made it possible to acquire molecular depth profiles on a wide variety of polymers. Previous studies by many different groups have demonstrated that not all polymers can be successfully depth profiled and that certain classes of polymers undergo sputter-induced chemical reduction when

Schedule	Paper Number	Title		
bombarded by C_{60}^+ ions. If the polymer sputter yield is not high enough, the subsurface sputter-induced damage will				
accumulate as a function of sputter ion dose and the secondary molecular ion signals will not be stable. A number of				
different analytical parameters have been previously explored in attempts to improve depth profiling of these difficult				
polymers including sample temperature, beam energy, and incidence angle. We reported last year that glancing C_{60}^+				
incidence angle (76° from surface normal) significantly improved the ability to depth profile polycarbonate and				
polystyrene, which were previously unsuccessful at a typical incidence angle of 48°. However, even under these				
optimized conditions, the depth profiles eventually fail after several hundred nanometers due to accumulated sputter				
damage to the polymer and a concurrent reduction of the secondary ion and sputter yields. In the present study, we				
report the efficacy of an argon gas cluster ion beam (GCIB) for steady-state molecular depth profiling the same				
polymer systems. Depth profiles using different GCIB experimental conditions will be reported and compared to C_{60}^+				
depth profiles acquired under optimized conditions.				