

Identifying Stains on Packaging Materials with PHI Scanning XPS Microprobes

Introduction

Packaging materials with stained bond pads are usually rejected whether or not the stain interferes with bonding. Stains are typically process residues or diffusion products that form a thin contamination layer on the surface of the bond pad.

These stains are frequently too thin to detect with analysis tools such as SEM/EDX or Micro-FTIR and require the use of a surface analysis tool for characterization.

Micro-area Spectroscopy

In this example, the micro-area spectroscopy and imaging capabilities of the *Quantera* II Scanning XPS Microprobe were used to identify the composition of a stain on a gold bond pad.

Surface Composition (Atom %)		
Element	On Stain	Off Stain
Carbon	29.8	47.8
Oxygen	47.0	31.2
Gold	0.2	5.5
Copper	0.0	0.5
Calcium	8.5	0.0
Silicon	7.8	9.7
Nitrogen	0.0	3.4
Fluorine	1.2	0.0
Chlorine	1.9	1.2
Sulfur	1.7	0.0
Sodium	1.0	0.0
Magnesium	0.9	0.0

XPS data show the presence of calcium, fluorine, sodium, chlorine, and magnesium in the stained area.

Optical image of stained gold pads on a printed circuit package (1072 x 812 μ m) obtained with the Quantera II's sample positioning station

XPS images of calcium (red) and gold (green) show calcium is associated with the stain. Compositional data was obtained at the indicated (+) locations on and off of the stain.

Application Note

Calcium and other contaminants were detected in the stained area using a 50 μ m diameter x-ray beam.

Summary

The *Quantera* II SXM provides high micro-area sensitivity for the detection of contaminants associated with stains or defects. In the example presented here calcium, fluorine, sodium, chlorine, and magnesium were detected on a stain. Chemical state information available from the XPS data revealed calcium carbonate to be a significant component of the stain.

High resolution carbon spectrum from the stained area shows the presence of a carbonate.

Physical Electronics USA, 18725 Lake Drive East, Chanhassen, MN 55317 Telephone: 952-828-6200, Website: www.phi.com

ULVAC-PHI, 370 Enzo, Chigasaki City, Kanagawa 253-8522, Japan Telephone 81-467-85-4220, Website: www.ulvac-phi.co.jp